Different Tie Material

Autopsy Results

Cracked specimens with different ties

Black w/ST

Black w/ BT

Autopsy Results

Cracked specimens with different ties

XM28 w/ BT

Microscopic View

Visual Examination of Steel Corrosion

(Cracked - Identical mats)

Total Charge

Corrosion Resistance of Reinforcing Bars

• Selection of corrosion resistant bars after 503 days of testing:

Rank	Bar Type	Corrosion Performance
1	316LN	Best
2	Duplex 2304	
3	Duplex 2205	
4	Zinc-clad	
5	Galvanized	
6	XM-28	
7	Zbar	
8	Ероху	
9	MMFX II	
10	Black	Worst

Findings

Dissimilar mats cause galvanic corrosion
Use identical material

 Dissimilar metallic ties cause galvanic coupling Use inert (plastic) ties or Ties with identical material to rebar

Bond Strength

Lap-splice beam specimen

Construction of Lap-splice beams

Test Set-up

Bond Ratio

Measured Bond Strength of Test Bar/Black Bar

Splitting Cracks prior to Failure

Failure Modes

Face and Side Splitting Mode (Black, #8 bars, 24 in. splice, Confined)

Crack Pattern

No.8, side splitting failure, 24 in. splice

Bar stress vs. crack width

Bond Force Transfer Mechanism

Effect of Relative Rib Ratio

No.5 Bars

Effect of Surface Roughness

No.5 Bars

Effect of Coating Thickness

No.5 Bars

Findings

- Bond Ratio
 - MMFX2, Duplex 2205, Duplex 2304, 316LN = Black
 - Black > XM28 (97%), Galvanized (96%), Zbar (94%)
 - > Epoxy (89%) > Zinc-clad (79%)
- Relative Rib Ratio
 - Low influential to bond strength
- Surface Roughness and Coating Thickness
 High correlation to bond strength

Summary

- Stainless steel rebar
 - Pros: corrosion-resistant, comparable bond strength with conventional steel
 - Cons: Initial construction cost high, pitting or crevice corrosion (XM-28), galvanic corrosion
- Galvanized and Dual-coated rebar
 - Pros: corrosion-resistant, comparable bond strength, relatively lower cost than stainless steel bars
 - Cons: corrosion-resistance drops when all zinc is consumed, thicker coating will decrease bond strength

Summary

- MMFX II rebar
 - Pros: high-strength, comparable bond strength with conventional steel
 - Cons: galvanic corrosion
- Zinc-clad bar
 - Pros: corrosion-resistant
 - Cons: reduction in bond strength, relative cost compared to galvanized bar is higher
- Epoxy-coated rebar
 - Pros: cost comparable to conventional steel
 - Cons: damage in coating, debonding

Questions?

Price

- \$/lb/ft
 - Carbon Steel: \$0.5
 - Epoxy Coated: \$0.55 (1.1 times more than black)
 - Zbar: \$0.75 (1.5 more than black)
 - Galvanized: \$0.75 (1.5 more than black)
 - Zinc-clad: \$1.75 (3.5 more than black)
 - XM-28: \$2.0 (4 more than black)
 - Duplex 2205: \$2.25 (4.5 more than black)
 - Duplex 2304: \$2.25 (4.5 more than black)
 - 316LN: \$3 to 4 (6 to 8 more than black)