Synthesis Study on Load **Capacity of Concrete Slab Bridges without Plans Richard Miller Bahram Shahrooz** Paul Gearhart

Problem Statement

- It is estimated there are over 1200 concrete slab bridges with unknown properties in Ohio.
- Previously, visual inspection was adequate to assess these bridges.
- FHWA now requires numerical rating.
- In some counties, loads have increased due to oil and gas exploration.

PARAMETERS NEEDED TO RATE A SLAB BRIDGE

- Geometry
 - Span, slab thickness, condition of support
- Concrete strength, f_c'
- Reinforcing bar
 - Yield strength, fy
 - Effective Depth, d
 - Area of Bar A_s (bar diameter and spacing)

OBJECTIVE

Provide ODOT and County Engineers with a suite of possible tools to determine the properties of concrete slab bridges.

PROPOSED TEST METHODOLOGY

Historical record

UNIVERSITY

- Standard drawings
- Non-destructive or minimally invasive field/lab measurements

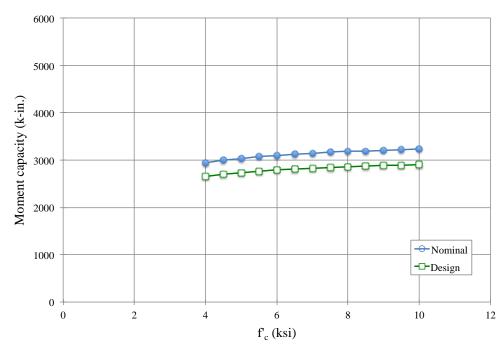
 A literature search and a survey were used to find the probable accuracy of various methods.

PROPOSED TEST METHODOLOGY - GEOMETRY

• Determine bridge geometry.

UNIVERSITY OF

- This is done through simple measurement of the slab thickness and span length(s).
- Condition of support is more difficult to determine.
 - Literature suggests it is somewhere between fixed and pinned. Conservative to assume a pin unless the abutment is integral.


CONCRETE STRENGTH

Oddly, concrete strength is not a critical parameter since the SLAB is a <u>flexural element</u>. The graph shows the influence of concrete strength on moment capacity of a rectangular beam.

Note that doubling the concrete strength only increases moment capacity by about 10%!!

)hio'

ESEARC

 Coring is the most accurate method of strength determination but it expensive and it does some damage to the bridge.

It may be possible to core in a shoulder area.

Usually, 3 cores are needed.

- Historical data/specifications may provide an estimate of specified strength.
 - If the date of construction can be estimated, many slab bridges used standard specifications. It may be possible to estimate the design strength from these records.
 - Sometimes material strength records are kept separately and data may be available.

- NDT techniques like rebound hammer or Windsor probe may provide accurate enough results for rating as concrete strength is not an important parameter.
 - Data suggests NDT techniques without calibration by coring are +/- 1500 psi on strength.
 - Rebound hammers are less accurate near edges or on thin members.

- Rating is usually done using design strength.
 NDT methods measure actual strength which is usually greater than design strength; especially in older bridges.
- Large errors in concrete strength have little effect on rating flexural members.

UNIVERSITY OF

- NDT is likely accurate enough for slabs but not for compression members.

REINFORCING BAR -MAGNETOMETER

- Can be used to find bar size, spacing and cover.
- Relatively cheap (about \$2500).
 - Could be rented or shared.
 - ODOT has one!
 - Very easy to use!

UNIVERSITY

- Better models download results to a computer

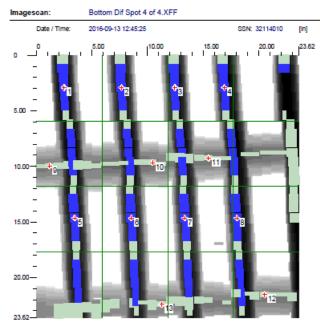
PROPOSED TEST METHODOLOGY COVER

- Cover is needed to determine effective depth, d.
- Effective depth is important as moment capacity, M_n , is directly proportional to d.
- Magnetometer accuracy:

- Cover of 1.75 inches or less, error < 10%
- Covers exceeding 1.75 inches: error increases as cover increases. Errors may be as high as 20%.
- For many cases, the error is about +/- 3/8 inch.
- Magnetometer generally cannot detect covers exceeding 3 inches but ground penetrating radar can be used.

PROPOSED TEST METHODOLOGY STEEL AREA

- Area of steel is an important parameter.
- Over typical reinforcing ratios, the moment capacity, M_n , is almost directly proportional to steel area.
- Steel area is found from two parameters:
 - Bar spacing
 - Bar size



PROPOSED TEST METHODOLOGY BAR SPACING

- Magnetometer can find bar spacing for cover < 3 in.
- Accuracy is about +/- 3/8 in, but a large number of readings allow for reasonable determination of bar spacing.
- Magnetometer can also locate bar ends.
- GPR needed for large covers.

PROPOSED TEST METHODOLOGY BAR SPACING

UNIVERSITY OF Cincinnati

JHIO

Actual magnetometer scan.

PROPOSED TEST METHODOLOGY BAR SPACING

- It is sometimes possible to verify bar spacing by another means.
- Often, older bridges have deteriorated areas with exposed bar.
- Slab bridges were often built using standard details.
 Magnetometer results can be checked against standard detail of the era to see if they match.

UNIVERSITY OF

Cincin

PROPOSED TEST METHODOLOGY BAR SIZE

- Magnetometer can find bar size for cases of cover < 3 inches.
- The accuracy is plus or minus one bar size.
- The accuracy deteriorates as the cover gets larger.
- Using a large number of readings may improve accuracy by taking an average bar size.

PROPOSED TEST METHODOLOGY BAR SIZE

- The engineer must use some judgement on the bar size results.
- If needed bar size can be verified by:
 - Finding a deteriorated area
 - Taking a core

UNIVERSITY

 The magnetometer is then used to verify spacing, bar ends and if all the bars are the same diameter.

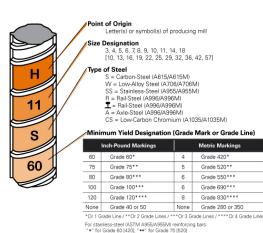
PROPOSED TEST METHODOLOGY

- Problems with magnetometer
 - Not usable for very large covers.
 - Skewed bars can cause a problem unless the scan is done along the skew.
 - Very close spacing affects the reading as adjacent bars affect the magnetic field.
 - Lap splices are seen as bigger bars.

– Voids/delams in the concrete affect readings.

YIELD STRENGTH

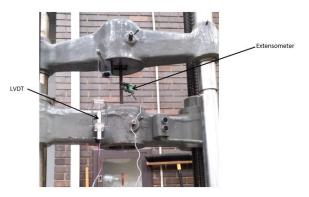
- Yield strength of reinforcing bars is a critical parameter.
- Moment capacity is directly proportional to yield strength.
 - No easy method to measure this in situ.


Historical Records

- CRSI has records of historical bar. During certain eras, there was a maximum bar strength.
 - Prior to 1959
 - Structural (f_y=33ksi)
 - Intermediate (fy=40ksi)
 - Hard (f_y=50ksi)
 - Grade 60 did not appear until 1959.
- Most newer bridges will use Grade 60 reinforcing bars.

- Historical Record
 - CRSI has mill mark data.
 - If a mill mark can be found (perhaps in a deteriorated area), the bar can be identified.

Figure courtesy of CRSI.


UNIVERSITY OF Cincinnati

- Tensile testing of a reinforcing bar removed from a structure AASHTO T68.
 - It is possible that a bar sample could be removed from a deteriorated area.

UNIVERSIT

 This test needs an approximately 3 foot long sample, which is probably impractical.

- Tensile testing under AASHTO T244.
- This method uses a machined specimen.
- Standard size is 0.5 inch diameter with a 2 inch gauge length.
 - Overall length is about 6 inches. Could be a bar removed from a deteriorated area.

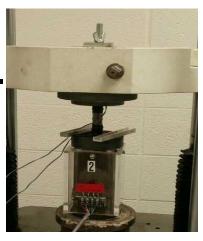
- Obtaining a 6 inch long bar might be impractical.
- Tensile testing under AASHTO T244 allows bars as small as 0.113 inch diameter with a 0.45 inch gauge length.
 One drawback to AASHTO T244 is machining costs.

- Two possible alternate methods
 - Compression testing.
 - ASTM E 09 actually provides a method of using compression testing.
 - Hardness testing
 - Literature suggests that there is a relationship between hardness and strength.

Compression Testing

Structural steel sections can be tested in compression if kL/r \leq 6.0.

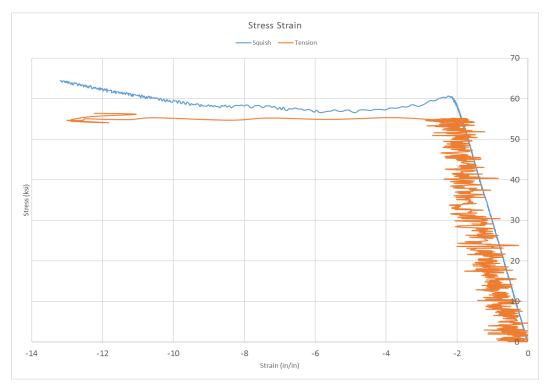
This assure buckling is not a issue.


A 3 inch long specimen would have kL/r \leq 6.0 for #4 bar size and larger. A 3 inch bar length can be obtained by cutting it from a deteriorated area or from a 3.5 or 4 inch core.

UNIVERSITY OF Cincinnat

- The ends need to be machined flat and parallel (but this less machining than a T244 specimen).
- Hardened end plates are used.

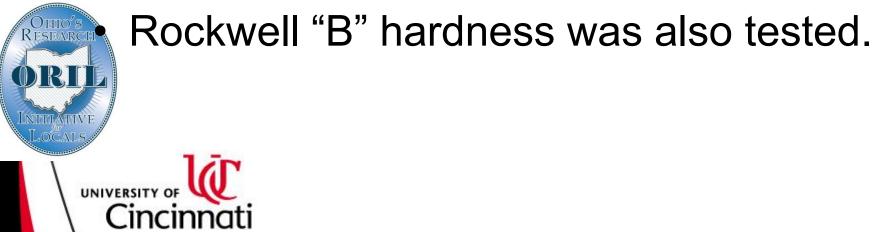
UNIVERSIT

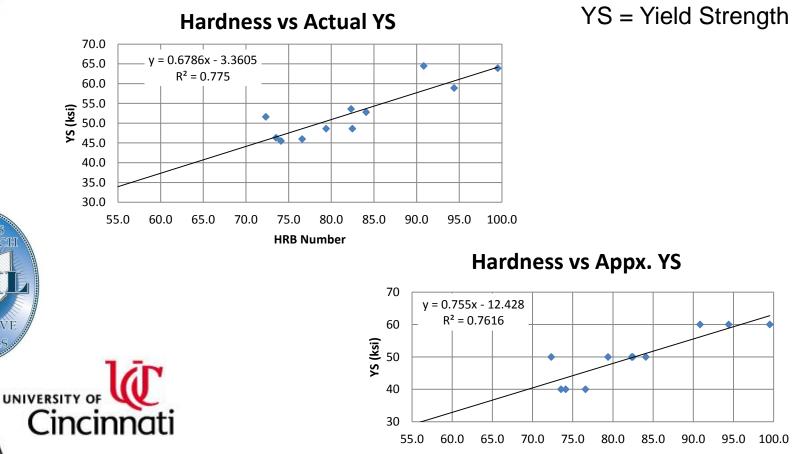

Guide pins center the specimen.

- Strain gauges were used to measure stress/strain curves.
- The sides of the bar had to be ground to allow the gauges to be attached.

UNIVERSITY OF Cincinnati

Comparison of a tensile test with a compression test

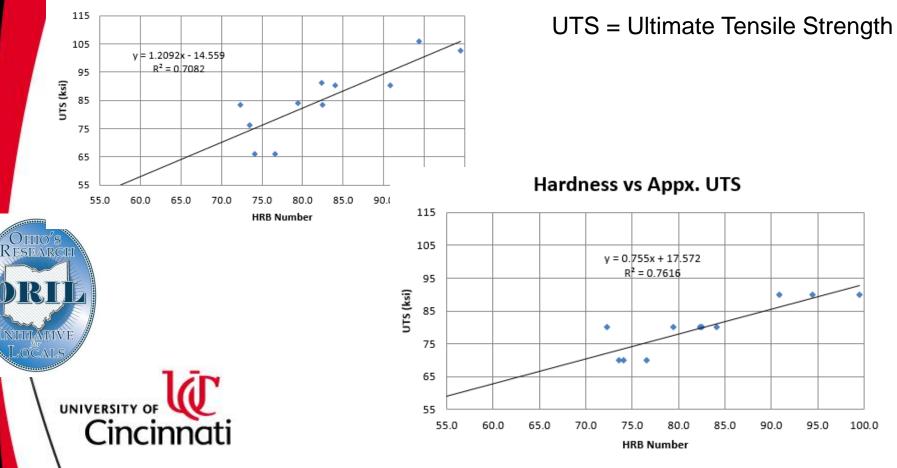

- There was some difference, usually about 5%-10% between the compression and tensile tests.
- However, this is accurate enough to determine the Grade of the bar, which is used for rating.


Literature suggests that there may be a relationship between strength and hardness.

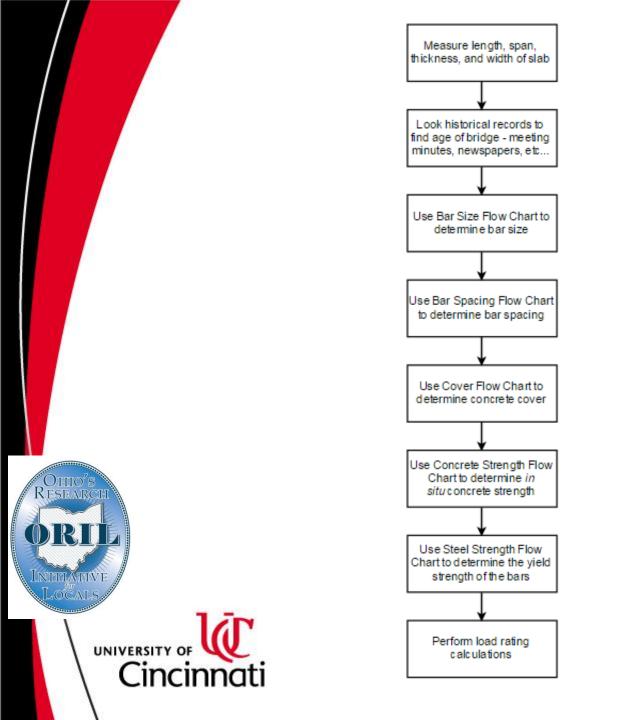
Nominal strength is used for rating. Thus the test has to only be accurate enough to identify grade.

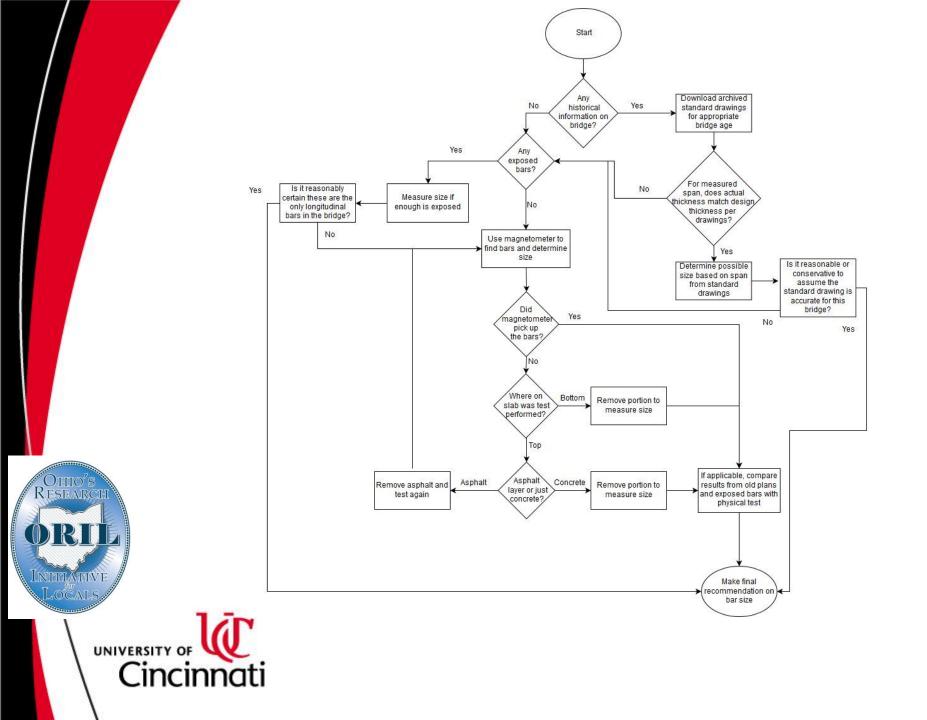
UNIVERSITY OF Cincinnati

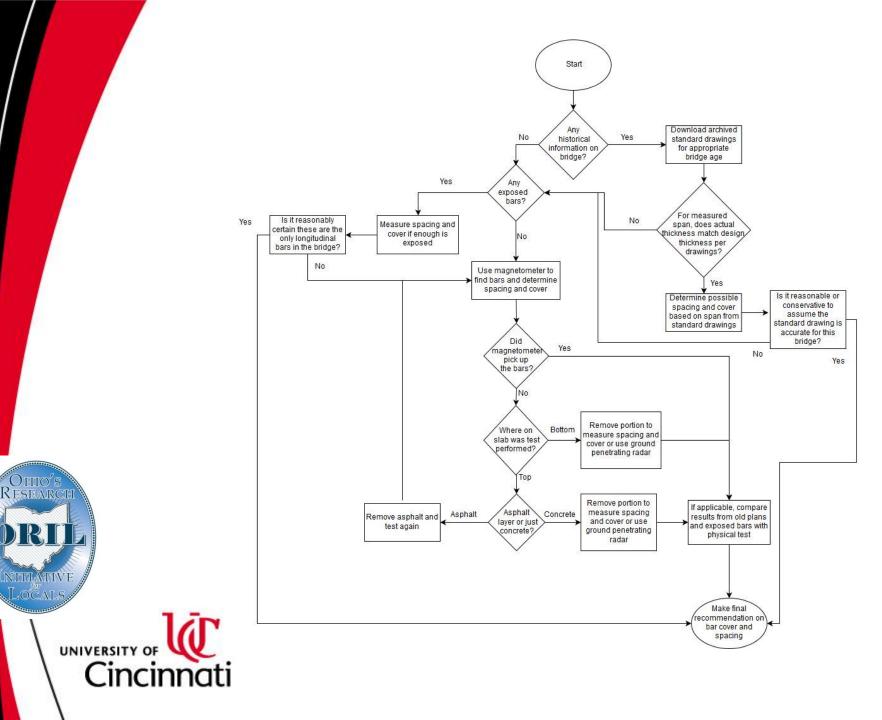
- The research team collected samples of old reinforcing bar.
- Bars were tested for yield and tensile strength.



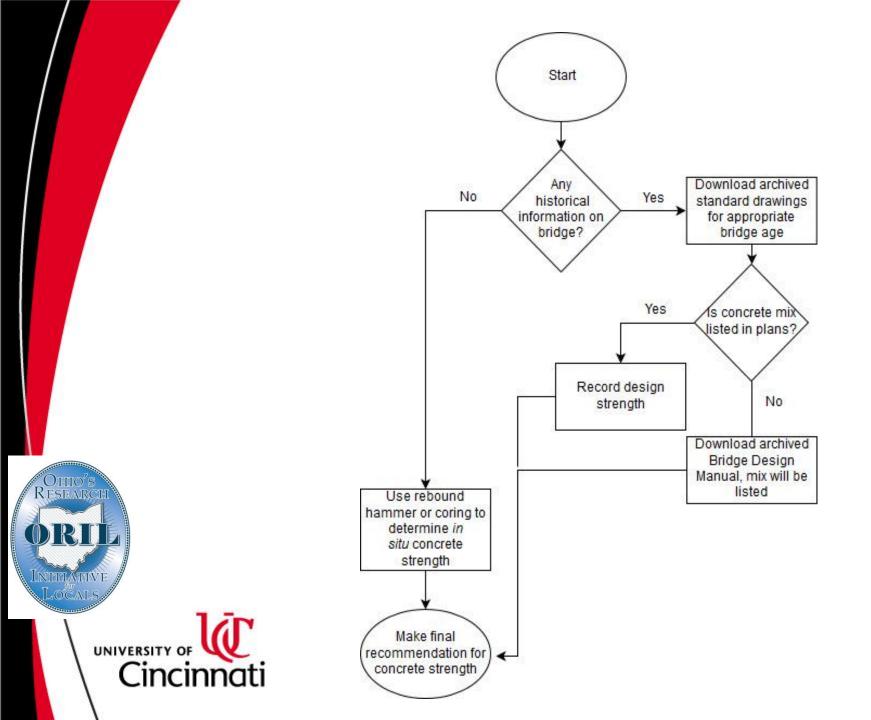
Ohio

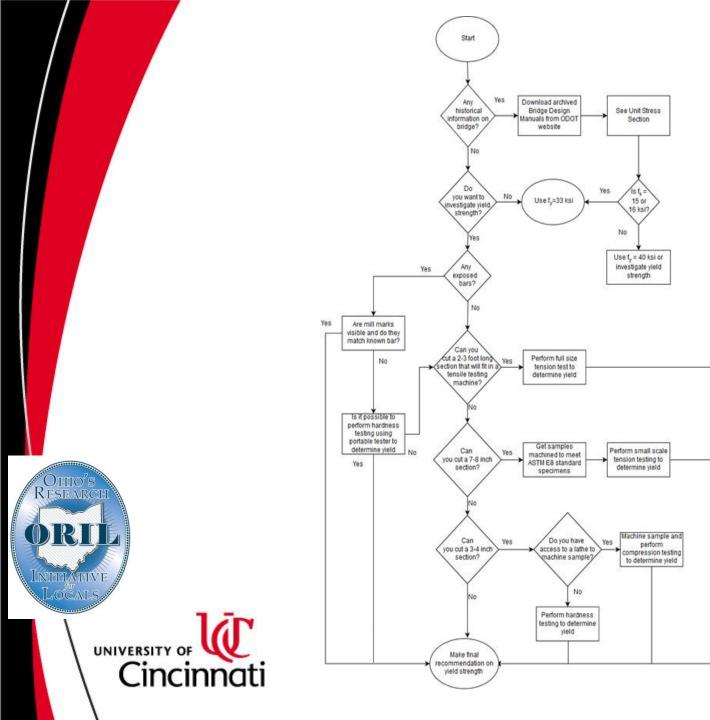

HRB Number





YIELD STRENGTH MEASUREMENT -HARDNESS


- There appears to be a reasonable enough relationship between hardness and strength to find Grade.
- Portable hardness testers are available for field use which could be used on an exposed bar.



 \mathbb{R}

VERIFICATION

Two one day field studies

- Studied bridges in Fayette County where plans were available. Plans were not shown to the research team until after results were obtained.
- Studied bridges in Jefferson County where plans were not available to determine if the methodology was practical.

VERIFICATION

Fayette County

- Field results confirmed accuracy of magnetometer and rebound hammer.
- Some difficulties with the magnetometer on bridges where the cover was large.
- If bars are skewed, the magnetometer scan must follow the skew.

VERIFICATION

Jefferson County

- It was possible to get good quality scans of the rebar with the magnetometer.
- On all the bridges, deteriorated areas confirmed the magnetometer readings.

	Avg. Error		
Property	Literature		
	Search	Survey	Experimental
Concrete Strength	30%-40%	1500 psi	24.2%
Cover (Effective Depth)	0.25 inches	0.50 inches	0.22 inches
Bar Size	1 bar size	1 bar size	1 bar size
Bar Spacing	0.375 inches	0.50 inches	0.384 inches

- It is possible to determine the properties of a slab bridge with sufficient accuracy for rating even if the plans are lost.
- Historical records can sometimes provide information on materials used at the time if the approximate date of construction is known.

- Concrete strength is most accurately found from cores.
- Concrete strength can be found using NDT techniques such as a rebound hammer. The accuracy is +/- 1500 psi.

Concrete strength is not an important parameter and actual strengths usually exceed the design strength.

UNIVERSITY OF

- Magnetometers can determine the cover distance to the reinforcing bar.
 - Accuracy decreases with increasing cover.
 - Accuracy is within 10% for cover less than 1.75 inches.
 - For larger covers, the accuracy may decrease to +/- 25%.

– For large cover values, GPR is needed.

- Magnetometers can find bar spacing.
 - Accuracy decreases with increasing cover.
 - Bars spacing is generally within +/- 3/8 inch.
 - Averaging multiple scans provides better results.

UNIVERSITY

 Bar spacing can often be verified from some other means such as finding a deteriorated area.

- Magnetometers can find bar size.
 - Accuracy decreases with increasing cover.
 - Bars size is usually +/- one bar size.
 - Bar size can often be verified from some other means such as finding a deteriorated area.

- Yield strength can be estimated from
 - Historical record
 - Mill marks
 - Tension tests (AASHTO T68 or T244)
 - Compression tests
 - Hardness

REPORT

http://www.dot.state.oh.us/groups/oril/ Documents/Projects/ structures_synthesis.html

THANKS TO THE TAC PANEL

- Fred Pausch (County Engineer's Association of Ohio),
- Jim Branagan (Jefferson County Engineer),
- Rui Liu (Kent State University),
- Steve Luebbe (Fayette County Engineer and Bearcat),
- Eric Steinberg (Ohio University)
- Amjad Waheed (Ohio Department of Transportation).

Questions??

UNIVERSITY OF Cincinnati