Bridge Rehabilitation and Cost Effective Methods for Addressing Bridge Deterioration

Presented at

Ohio County Engineers Conference

August 23, 2017

by

Siva Venugopalan Principal Engineer Siva Corrosion Services, Inc. Siva@SivaCorrosion.com

Durability of Concrete

- Strength
- Chloride Ingress
- Carbonation Attack
- Sulfate Attack
- Alkali Silica Attack
- Abrasion (rapid moving water, floating ice)
- Freezing and Thawing

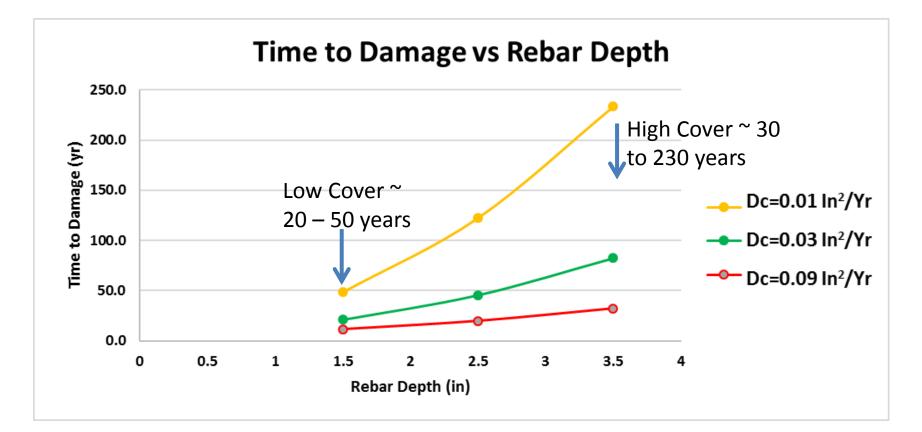
Concrete Quality for 100-Year Life

- Concrete should have the following properties:
 - Strength, workability
 - Resistance to freeze thaw
 - Resistance to chloride penetration
 - Resistance to sulfate attack
 - Resistance to Alkali-Silica Reaction
 - Abrasion resistance

Effect of Cover and Concrete Quality on Corrosion Initiation

Use Diffusion Equation:

$$C_{x,t} = C_o \left[1 - erf\left(\frac{x}{2\sqrt{Dt}}\right) \right]$$


Using

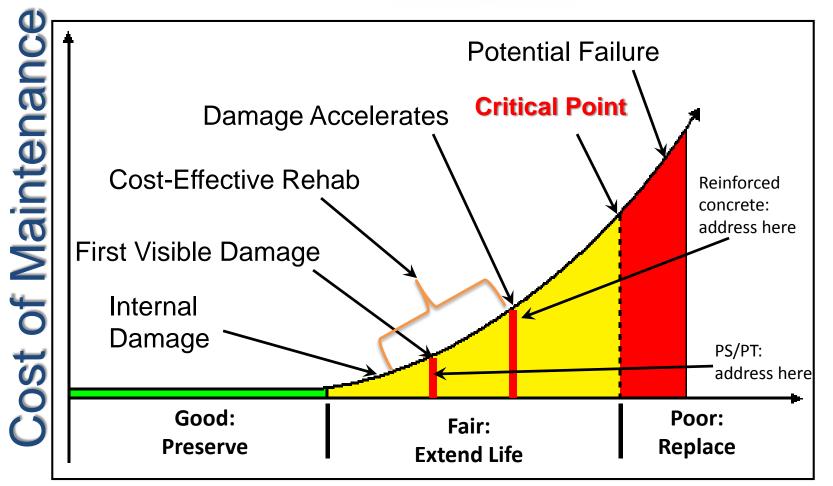
➢ Cover of 1.5", 2.5", and 3.5"

- Average surface chloride for deck, substructure, and piles in marine environments
- Chloride at the rebar = 400 ppm
- Diffusion coefficients (in²/yr.) of:
 - ✓ 0.01 in²/yr. Excellent durability,
 - \checkmark 0.03 in²/yr. Good to fair durability,
 - \checkmark 0.09 in²/yr. Poor Durability

Time to Concrete Damage for Various Rebar Depth

Chloride-Induced Corrosion

- Chloride from deicing salt application diffuses into concrete
- When chloride at rebar level exceeds 1.2 lb/CY, passive film breaks down and corrosion initiates
- If pH <11, corrosion can initiate at lower chloride levels
- If sulfate is present, chloride may not be required for corrosion to begin



Bridge Preservation

- When a bridge experiences corrosion, we want to answer the questions:
 - How bad is bad?
 - What is the rate of deterioration?
 - How do we cost effectively extend the life?
- SCS develops a strategic inspection/evaluation plan to quickly indentify/quantify problems.
- Average preservation cost for owners:
 20 to 25% compared to replacement.

Corrosion-Related Concrete Damage

Condition of Structure

Assessment of Concrete Structures

- 1. Non-Destructive Evaluation (earlier identification)
 - Identify and quantify deterioration of concrete and steel
- 2. Electrochemical Testing
 - Quantify time-to-failure, corrosion rates, future section losses
- 3. Laboratory Testing
 - Additional material and corrosion analysis
- 4. Estimate Service Life
 - Recommend cost effective solution

Non-Destructive Testing (NDT)

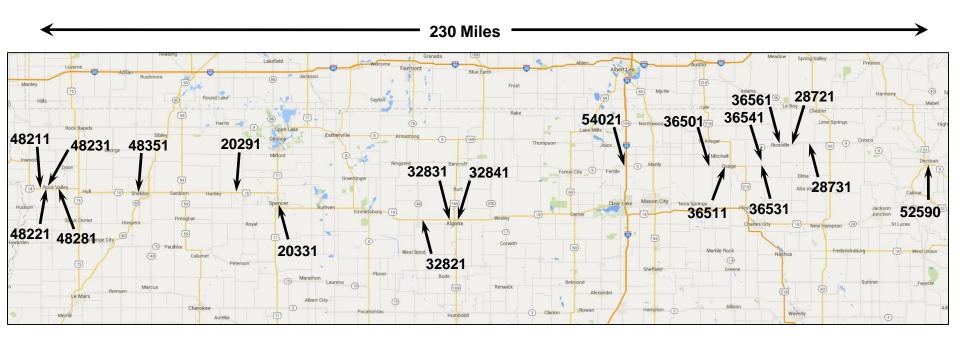
- Use NDT to see hidden problems
- Minimize inspection time and damage to the structure
- Primary NDT tools:
 - Ground Penetrating Radar (GPR)
 - Infrared Thermography
 - Impact-Echo
 - Ultrasonic Tomography

Laboratory Testing

- Laboratory Testing
 - Chloride Content Profiling (AASHTO T-260, ASTM C1152)
 - pH Indicator (Phenolphthalein)
 - Compressive Strength (ASTM C39)
 - Petrographic Analysis to Examine:
 - General Concrete Properties (density, air-void, w/cm) (ASTM C876)
 - Alkali-Silica Reactivity
 - Freeze-Thaw Damage (ASTM C472)

Proper Sampling Size and Number

- Chloride cores shall be 4inch diameter, at least 3inch diameter.
- A smaller core or powder samples can lead to significant variation in chloride level leading to erroneous decisions.
- Sampling number sufficient to represent the entire structure.



Processing Chloride Cores for Service Life Analysis

- Mark 0.5-inch horizons along the depth of the core.
- Dry cut through the core at each horizon into concrete discs (slices).
- Pre-crush each slice into ~0.25-inch maximum size pieces.
- Pulverize each pre-crushed slice and pass through #50 sieve.
- Thoroughly clean after each pre-crush and pulverize session.
- Digest each sample in acid to extract chloride from the concrete powder.
- Titrate each sample to determine the chloride content.
- Process titration data to obtain chloride content.
- Perform chloride test at various depths of the core to obtain chloride profile for each core.
- Tabulate chloride data at various depths for analysis and service life calculations.

US-18 & IA-9 Bridges

Bridges built between 1969 to 2007

Preserving Bridges in 230-mile Highway Corridor

- US 18 and IA 9 East-West Highways have hundreds of bridges in that corridor
- Need preservation program (doing the right thing at the right time for the right cost) to keep these bridges in good condition
- Preservation program required current condition and expected future condition

Preserving Bridges in 230-mile Corridor

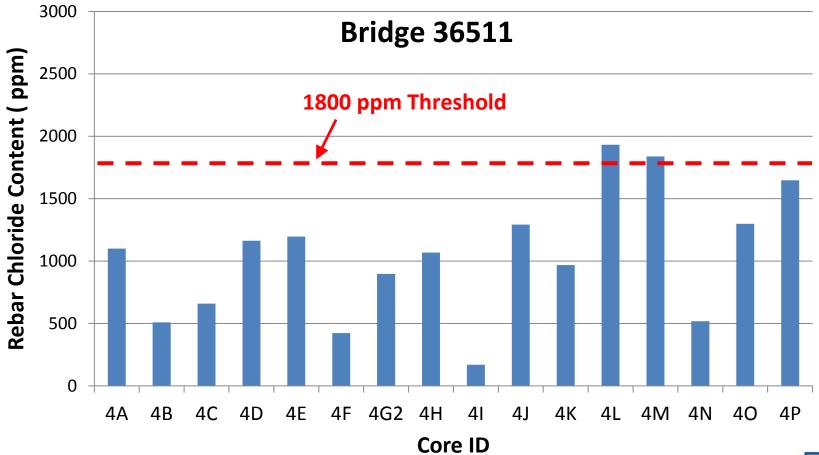
- Selected 6 bridge decks along US 18 and IA 9 for in-depth evaluation
- Selected 13 bridge decks for minimal sampling
- Goal is to identify preservation options to extend the lives of the decks by 50 years

US-18 & IA-9 Bridges

						Deck	Bridge	Deck					Тор	Bottom	Deck	
SCS	Bridge		IA 9: Feature	Year	No. of	Area	Length	Thick.	Const.	Deck	Super	Sub	Rebar	Rebar	Damage	Total
#	NBI #	Bridge ID	Crossed	Built	Spans	sq. ft.	ft.	in.	Joint?	GCR	GCR	GCR	Туре	Туре	%	cores
1	28721	4520.25009	Drainage Ditch	1976	3	3918	83	13.75	Y	6	6	7	Ероху	Bare	2.6	4
2	28731	4525.1S009	Crane Creek	1976	3	6278	133	20.25	Y	6	6	7	Ероху	Bare	5.4	13
3	36501	6693.55009	Rock Creek	1992	1	3586	83	8	Y	7	8	7	Ероху	Ероху	0.0	4
4	36511	6697.35009	Cedar River	1992	4	15984	370	8	Ν	7	7	7	Ероху	Ероху	0.0	17
5	36531	6607.25009	Little Cedar River	1979	3	13272	280	8	Ν	7	7	7	Ероху	Ероху	0.2	4
6	36541	6609.35009	Soap Creek	1978	3	5806	123	18.75	Ν	7	7	7	Ероху	Bare	0.4	13
7	36561	6616.8S009	Wapsipinicon River	1979	3	8817	188	8	Ν	6	7	7	Ероху	Bare	1.0	4
8	52590	9659.1S009	Division Street	1969	3	10497	163	7	Y	6	7	7	Bare	Bare	0.6	4
9	54021	9871.95009	Willow Creek	2004	1	4437	94	8	Y	8	8	8	Ероху	Ероху	0.0	4
			Ocheyedan River													
10	20291	2166.2S018	Overflow	1987	3	3586	83	15.25	Ν	7	7	8	Ероху	Bare	0.1	13
11	20331	2181.0S018	Little Sioux River	2006	4	33553	459	8	Y	7	8	8	Ероху	Ероху	0.0	8
12	32821	5521.8S018	Lotts Creek	1993	1	5098	108	8	Ν	7	8	8	Ероху	Ероху	1.1	5
13	32831	5529.95018	Drainage Ditch	1993	1	5506	93	8	Ν	7	8	8	Ероху	Ероху	0.1	4
			E Fork Des Moines													
14	32841	5530.3S018	River	1984	4	18876	330	8	Y*	7	8	6	Ероху	Bare	0.0	8
15	48211	8415.1S018	Dry Run Creek	2007	4	7344	170	20	Ν	7	7	7	Ероху	Ероху	0.0	4
			Rock River													
16	48221	8416.35018	Overflow	1989	3	8813	204	8	Y	7	7	7	Ероху	Ероху	0.0	13
17	48231	8416.6S018	Rock River	2002	4	18186	420	8	Ν	7	8	7	Ероху	Ероху	0.0	8
18	48281	8419.8S018	Rogg Creek	1985	3	6653	154	8	Ν	7	7	7	Ероху	Bare	0.1	4
19	48351	8441.3S018	Floyd River	1992	3	9865	209	8	Ν	7	8	7	Ероху	Ероху	0.0	4

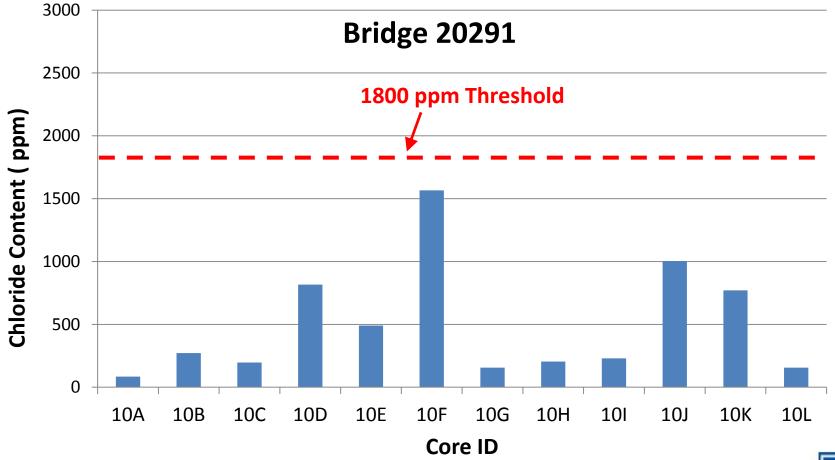
SCS Methodology

- More comprehensive testing and analysis on indepth service-life bridges (SLB)
 - allow accurate future concrete damage projections
 - life-cycle cost (LCC) analyses of repair options
 - select appropriate preservation option based on LCC
- Chloride and damage data for non-SLB compared to SLB in order to select effective preservation options for each deck

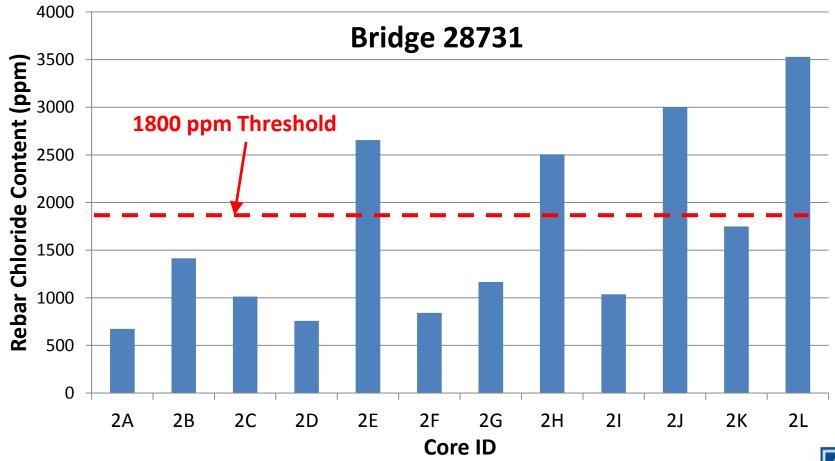


In-Depth Evaluation of Service Life Bridges

- Delamination survey
- Cover survey
- 4 chloride cores per span; 1 petrographic core
 Cores located using Ground Penetrating Radar
- Chloride profiling testing at 8 depths
- Petrographic analysis to determine concrete quality
- Service life model (NCHRP 558)
- Identify effective preservation options
- Compare life cycle costs to select best option



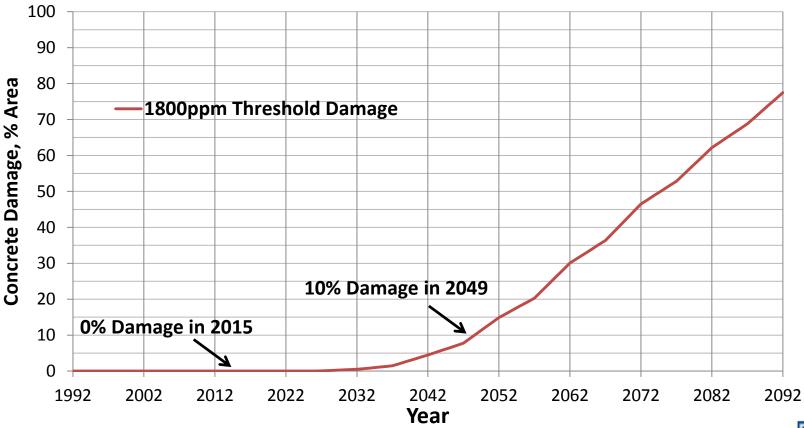
SLB: Example 1 – Bridge 36511 (Chlorides at Threshold)



SLB: Example 2 – Bridge 20291 (Chloride below Threshold)

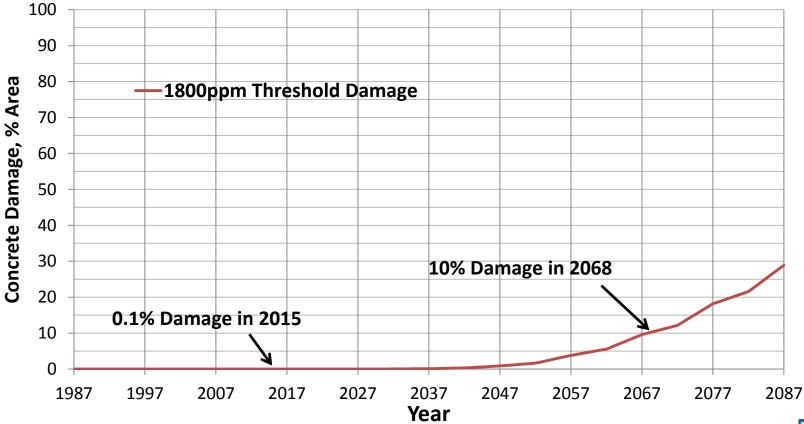
SLB: Example 3 – Bridge 28731 (Chloride above Threshold)

SLB Data Summary

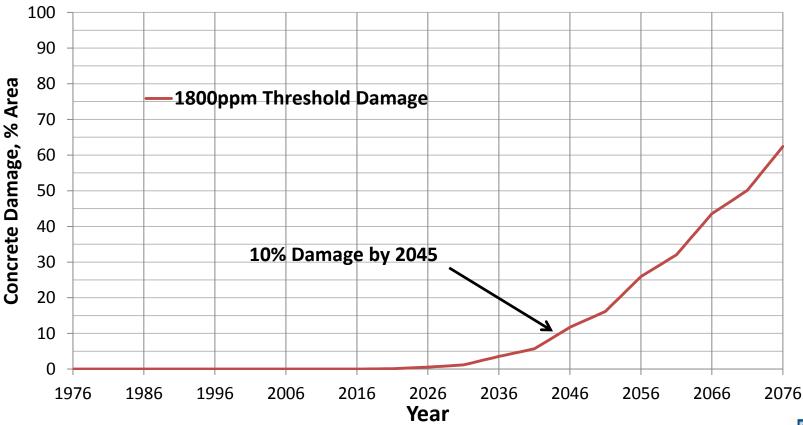

Bridge	Facility Crossed	Year Built	Element	% Damage	Avg. Cover (in)	95% Cover (in)	Avg. Diffusion Coeff. (in ² /yr)	Cl% over 1800 ppm	Cl% over 350 ppm	
				IA9 Bridge	s					
28721	Drainage Ditch	1976	Deck	2.6%	2.61	1.80	0.053	25.0%	75.0%	
28731	Crane Creek	1976	Deck	5.4%	2.82	2.02	0.056	33.3%	100.0%	above
36501	Rock Creek	1992	Deck	0.0%	2.73	2.29	0.084	0.0%	75.0%	
36511	Cedar River	1992	Deck	0.0%	2.74	2.32	0.061	12.5%	93.8%	at
36531	Little Cedar River	1979	Deck	0.2%	2.35	1.96	0.021	0.0%	25.0%	
36541	Soap Creek	1978	Deck	0.4%	2.84	1.86	0.045	25.0%	91.7%	
36561	Wapsipinicon River	1979	Deck	1.0%	2.35	2.05	0.051	25.0%	100.0%	
52590	*Division Street	1969	Deck	0.6%	2.22	1.72	0.010	0.0%	0.0%	
54021	Willow Creek	2004	Deck	0.0%	2.80	2.39	0.089	0.0%	75.0%	
				US18 Bridg	es					
20291	Ocheyedan River Overflow	1987	Deck	0.1%	3.38	2.58	0.052	0.0%	41.7%	below
20331	Little Sioux River	2006	Deck	0.0%	2.65	2.16	0.123	0.0%	25.0%	
32821	Lotts Creek	1993	Deck	1.1%	2.53	1.83	0.080	75.0%	100.0%	
32831	Drainage Ditch	1993	Deck	0.1%	2.49	1.89	0.071	25.0%	50.0%	
32841	E Fork Des Moines River	1984	Deck	0.0%	3.03	2.56	0.072	12.5%	75.0%	
48211	Dry Run Creek	2007	Deck	0.0%	3.36	2.63	0.177	0.0%	0.0%	
48221	Rock River Overflow	1989	Deck	0.0%	2.74	2.33	0.017	0.0%	16.7%	
48231	Rock River	2002	Deck	0.0%	2.47	1.93	0.058	0.0%	12.5%	
48281	Rogg Creek	1985	Deck	0.1%	2.49	1.83	0.066	0.0%	25.0%	
48351	Floyd River	1992	Deck	0.0%	2.78	2.32	0.085	0.0%	100.0%	

*Black Bar Deck

Service Life Model (Future Damage): Example 1 – Bridge 36511- Cl @ threshold


Projected Concrete Damage of Deck - 36511

Service Life Model (Future Damage): Example 2 – Bridge 20291-Cl below Threshold


Projected Concrete Damage of Deck - 20291

Service Life Model (Future Damage): Example 3 – Bridge 28731-Cl above Threshold

Projected Concrete Damage of Deck - 28731

SLB Life Cycle Cost Comparison

Bridge 36511: Example 1 – Chlorides at Threshold

Deck Repair Options		Repair Life, years	Initial Cost		Life Repair, resent Value	- '	Life Cycle Cost of Repair Options	
1	Patch Repairs Only	5	\$-	\$	103,600	\$ 66,054	\$ 169,654	
2	Thin Epoxy Overlay	15	\$ 122,44	40 \$	326,651	\$ 26,524	\$ 353,175	
3	LSHD Overlay	20	\$-	\$	175,845	\$ 21,785	\$ 197,630	

Bridge 20291: Example 2 – Chlorides below Threshold

Deck Repair Options		Repair Life, years	Initial Cost			8	è Repair MOT, Present Value	Life Cycle Cost of Repair Options	
1	Patch Repairs Only	5	\$	1,870	\$ 5,159	\$	24,444	\$	29,603
2	Thin Epoxy Overlay	15	\$	33,019	\$ 58,111	\$	15,674	\$	73,785
3	LSHD Overlay	20	\$	1,870	\$ 14,811	\$	16,820	\$	31,631

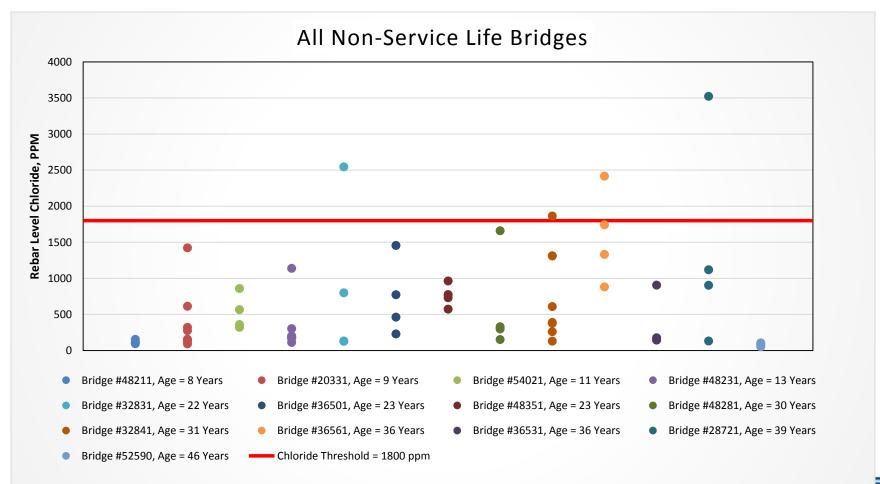
Bridge 28731: Example 3 – Chlorides above Threshold

		Repair	5						Life Cycle Cost of	
Deck Repair Options		Life, years	Ini	tial Cost	Pre	sent Value	P	resent Value	R	epair Options
1	LSHD Overlay	20	\$	83,360	\$	144,001	\$	35,897	\$	179,898
2	Overlay + GCP	20	\$	294,034	\$	500,570	\$	25,280	\$	525,850
3	Overlay + ICCP	50	\$	185,252	\$	308,063	\$	24,500	\$	332,563

SLB Recommendations

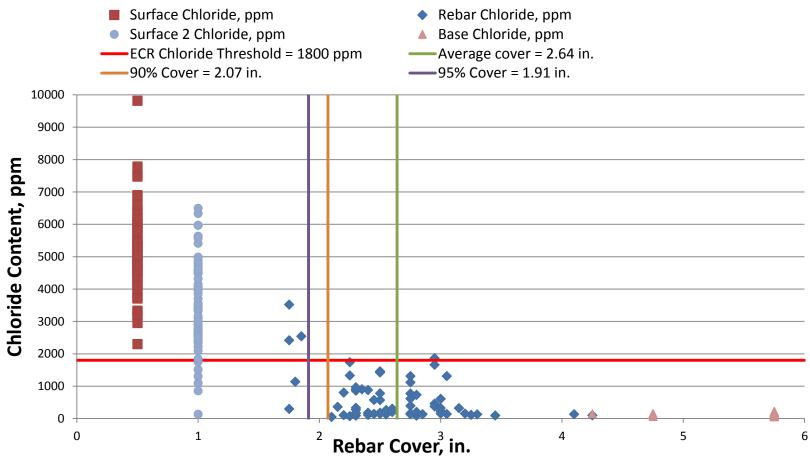
Bridge	Facility Crossed	Year Built	% Damage	Cl% over 1800 ppm	Recommendation Cost						
	IA9 Bric	Patch Only	Thin Overlay	LSHD	GCP	ICCP					
28721	Drainage Ditch	1976	2.6%	25.0%							
28731	Crane Creek	1976	5.4%	33.3%	-	-	\$179,898	\$525,850	\$332,563		
36501	Rock Creek	1992	0.0%	0.0%							
36511	Cedar River	1992	0.0%	12.5%	\$169,654	\$353,175	\$197,630	-	-		
36531	Little Cedar River	1979	0.2%	0.0%							
36541	Soap Creek	1978	0.4%	25.0%	\$123,179	\$141,595	\$127,355	-	-		
36561	Wapsipinicon River	1979	1.0%	25.0%							
52590	*Division Street	1969	0.6%	0.0%							
54021	Willow Creek	2004	0.0%	0.0%							
	US18 Bri	dges									
20291	Ocheyedan River Overflow	1987	0.1%	0.0%	\$29,603	\$73,785	\$31,631	-	-		
20331	Little Sioux River	2006	0.0%	0.0%							
32821	Lotts Creek	1993	1.1%	75.0%	-	-	\$155,741	\$425,228	\$295,813		
32831	Drainage Ditch	1993	0.1%	25.0%							
32841	E Fork Des Moines River	1984	0.0%	12.5%							
48211	Dry Run Creek	2007	0.0%	0.0%							
48221	Rock River Overflow	1989	0.0%	0.0%	\$5 <i>,</i> 058	\$158,314	\$39,700	-	-		
48231	Rock River	2002	0.0%	0.0%							
48281	Rogg Creek	1985	0.1%	0.0%							
48351	Floyd River	1992	0.0%	0.0%							

*Black Bar Deck

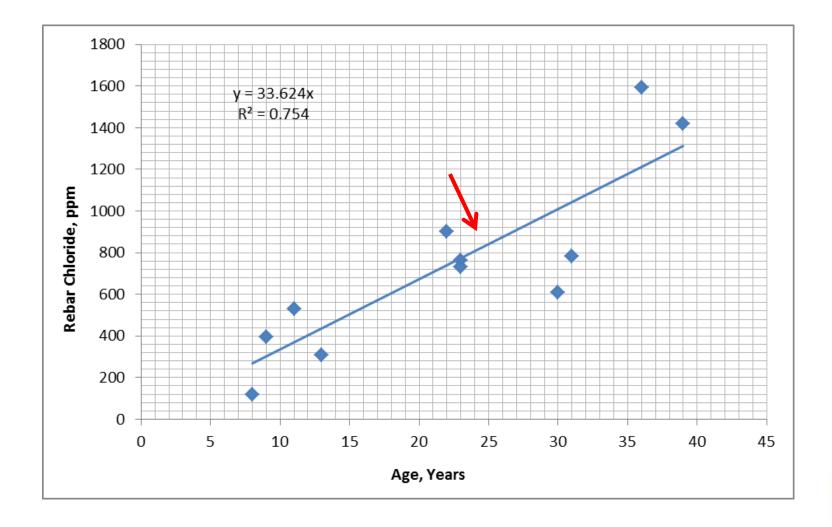


Non-Service Life Scope of Work

- Delamination survey
- Limited cover survey
- 4 to 8 chloride cores total
 Cores located using Ground Penetrating Radar
- Chloride testing along 4 depths
- Identify effective preservation options
- Compare to preservation options identified for service-life bridges



Non-SLB Chloride Analysis



Non-SLB Chloride Analysis

Non-SLB Chloride Analysis

Time for Chloride Sampling

- 1800 ppm chloride threshold for epoxy-coated rebar decks
- Using 50% of chloride threshold, time to 900 ppm = 900/33.624 ≈ 25 years
- SCS suggest collecting cores and testing for chloride profile at 25 years of age

Non-SLB Recommendations

Bridge	Facility Crossed	Year Built	Element	% Damage	Avg. Cover (in)	95% Cover (in)	Removal Depth (in)	Patch+LSHD Initial Cost		
IA9 Bridges										
28721	Drainage Ditch	1976	Deck	2.6%	2.61	1.80	1.75	\$52,680		
28731	Crane Creek	1976	Deck	5.4%	2.82	2.02	-	-		
36501	Rock Creek	1992	Deck	0.0%	2.73	2.29	2.00	\$46,360		
36511	Cedar River	1992	Deck	0.0%	2.74	2.32	-	-		
36531	Little Cedar River	1979	Deck	0.2%	2.35	1.96	1.75	\$144,090		
36541	Soap Creek	1978	Deck	0.4%	2.84	1.86	-	-		
36561	Wapsipinicon River	1979	Deck	1.0%	2.35	2.05	2.00	\$101,340		
52590	*Division Street	1969	Deck	0.6%	2.22	1.72	1.75	\$117,360		
54021	Willow Creek	2004	Deck	0.0%	2.80	2.39	2.00	\$54,870		
	US18 Bridges									
20291	Ocheyedan River Overflow	1987	Deck	0.1%	3.38	2.58	-	-		
20331	Little Sioux River	2006	Deck	0.0%	2.65	2.16	2.00	\$346,090		
32821	Lotts Creek	1993	Deck	1.1%	2.53	1.83	-	-		
32831	Drainage Ditch	1993	Deck	0.1%	2.49	1.89	1.75	\$65,680		
32841	E Fork Des Moines River	1984	Deck	0.0%	3.03	2.56	2.25	\$199,350		
48211	Dry Run Creek	2007	Deck	0.0%	3.36	2.63	2.00	\$83,940		
48221	Rock River Overflow	1989	Deck	0.0%	2.74	2.33	-	-		
48231	Rock River	2002	Deck	0.0%	2.47	1.93	1.75	\$192,360		
48281	Rogg Creek	1985	Deck	0.1%	2.49	1.83	1.75	\$77,180		
48351	Floyd River	1992	Deck	0.0%	2.78	2.32	2.00	\$109,150		

*Black Bar Deck

Recommendations

- Specific recommendation for each SLB
- For non-SLB, sample concrete for chloride profiling at 25 years
- Decide on preservation action based on chloride depth and concrete cover

Benefits to the Owners

- SCS was able to cost-effectively evaluate a small number of bridge decks in the 230-mile corridor and develop data-driven preservation solutions
- This inspection methodology may be applied to other ECR bridge decks in Iowa and other states and cost effectively develop bridge preservation schedule

Case Study 1 I -581 over Williamson Road, Roanoke, VA

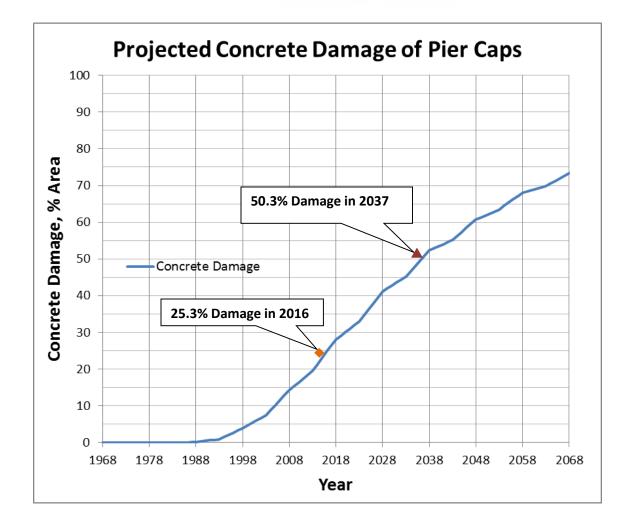
Bridge Information

- Built: 1968
- Regular reinforced concrete
- 5 Spans, 4 piers, 2 abutments
- Previous condition rating: 5 (fair) in the 2014 NBI inspection

Visual Conditions

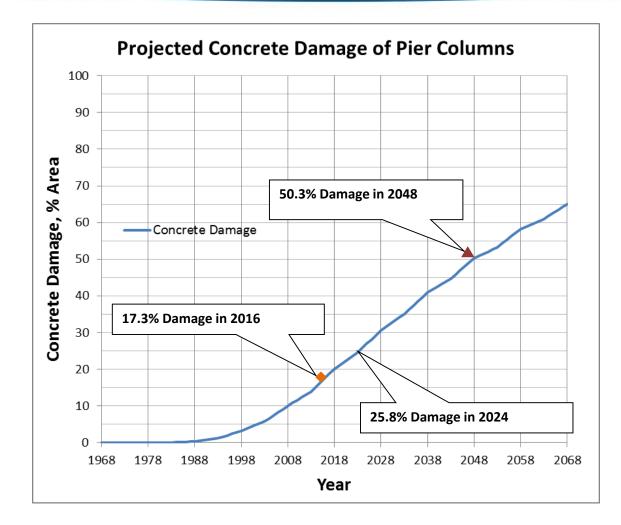
SCS Approaches

- Visual survey
- Delamination survey
- Concrete cover
- Chloride profile analysis
- Carbonation
- Petrographic analysis
- Service life modeling

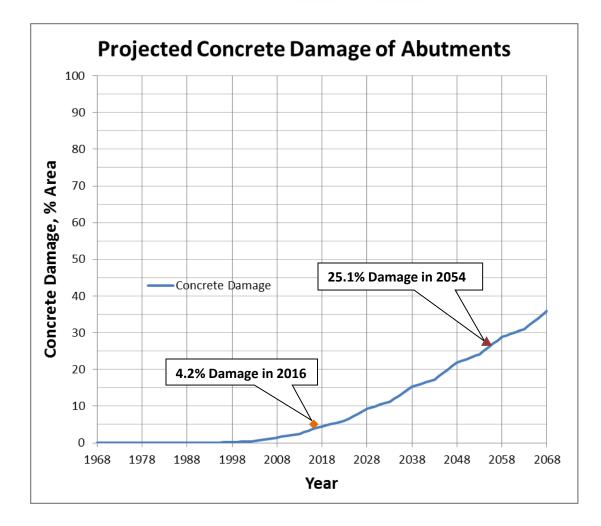


Inspection Findings

Element	% Damage	Avg. Cover (in)	95% Cover (in)	Cl% over 1000 ppm	Cl% over 500 ppm	Avg. Diffusion Coeff. (in²/yr)	Carbonation Depth (in)	Petro. Analysis	
Pier Caps	25.3	2.06	1.01	60%	60%	0.070	0.50	Generally	
Pier Columns	17.3	2.50	1.48	17%	17%	0.018	1.15	good quality concrete	
Abutments	4.2	2.67	1.15	25%	25%	0.039	0.64		



Service Life Processing – Pier Caps



Service Life Processing – Pier Columns

Service Life Processing - Abutments

Conclusions and Viable Options - Piers

- Viable repair options:
 - A. Patch repairs + Impressed Current Cathodic
 Protection (ICCP)
 - B. Patch repairs + Electrochemical Chloride
 Extraction (ECE) + a breathable sealer, or
 - C. Patch repairs + sprayed Galvanic Cathodic
 Protection (GCP) system

Conclusions and Viable Options - Abuts

• The viable repair options:

- A. Patch repairs + discrete GCP anodes + seal
- B. Patch repairs + thermal sprayed GCP, or
- C. Patch repairs + ECE + a breathable sealer

Life Cycle Cost Estimate

Bridge Element	Description	Initial Cost	Additional Repair Cost (50 years)	Additional MOT Cost (50 years)	Total
Pier Caps	Patch + ECE	\$784,849	\$147,311	\$0	\$932,160
Dian Calumana	Patch + ECE + Seal	\$231,000	\$85,633	\$18,206	\$334,839
Pier Columns	Patch + ICCP	<mark>\$229,032</mark>	<mark>\$147,311</mark>	<mark>\$0</mark>	<mark>\$376,343</mark>
Abutments	Patch + Anodes + Seal	\$12,589	\$49,250	\$0	\$61,840
Su	btotals	\$1,028,438	\$282,194	\$18,206	\$1, 328,839

SCS Recommendations

- Pier Caps Patch + ECE + Seal
- Pier columns Patch + ECE + Seal
- Abutments Patch + Discrete Anode + Seal

ECE ON 11 BRIDGES IN RICHMOND, VA

ECE on Pier – 11 Bridges

ECE on Pier – 11 Bridges

